Die u:cris Detailansicht:

Molecular Hessian matrices from a machine learning random forest regression algorithm

Autor(en)
Giorgio Domenichini, Christoph Dellago
Abstrakt

In this article, we present a machine learning model to obtain fast and accurate estimates of the molecular Hessian matrix. In this model, based on a random forest, the second derivatives of the energy with respect to redundant internal coordinates are learned individually. The internal coordinates together with their specific representation guarantee rotational and translational invariance. The model is trained on a subset of the QM7 dataset but is shown to be applicable to larger molecules picked from the QM9 dataset. From the predicted Hessian, it is also possible to obtain reasonable estimates of the vibrational frequencies, normal modes, and zero point energies of the molecules.

Organisation(en)
Computergestützte Materialphysik, Computergestützte Physik und Physik der Weichen Materie
Journal
Journal of Chemical Physics
Band
159
Anzahl der Seiten
12
ISSN
0021-9606
DOI
https://doi.org/10.48550/arXiv.2307.16512
Publikationsdatum
11-2023
Peer-reviewed
Ja
ÖFOS 2012
103006 Chemische Physik, 103043 Computational Physics
ASJC Scopus Sachgebiete
Allgemeine Physik und Astronomie, Physical and Theoretical Chemistry
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/0fb3d9c8-96ac-408f-a53f-24b4e8bfd533