Die u:cris Detailansicht:
Spectral properties and linear stability of self-similar wave maps
- Autor(en)
- Roland Donninger, Peter Christian Aichelburg
- Abstrakt
We study co--rotational wave maps from $(3+1)$--Minkowski space to the three--sphere $S^3$. It is known that there exists a countable family $\{f_n\}$ of self--similar solutions. We investigate their stability under linear perturbations by operator theoretic methods. To this end we study the spectra of the perturbation operators, prove well--posedness of the corresponding linear Cauchy problem and deduce a growth estimate for solutions. Finally, we study perturbations of the limiting solution which is obtained from $f_n$ by letting $n \to \infty$.
- Organisation(en)
- Gravitationsphysik
- Journal
- Journal of Hyperbolic Differential Equations
- Band
- 6
- Seiten
- 359-370
- Anzahl der Seiten
- 12
- ISSN
- 0219-8916
- DOI
- https://doi.org/10.1142/S0219891609001812
- Publikationsdatum
- 2009
- Peer-reviewed
- Ja
- ÖFOS 2012
- 1010 Mathematik, 1030 Physik, Astronomie
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/0f1c3203-2f51-4fe4-a914-414e33f4a643