Die u:cris Detailansicht:

Spectral properties and linear stability of self-similar wave maps

Autor(en)
Roland Donninger, Peter Christian Aichelburg
Abstrakt

We study co--rotational wave maps from $(3+1)$--Minkowski space to the three--sphere $S^3$. It is known that there exists a countable family $\{f_n\}$ of self--similar solutions. We investigate their stability under linear perturbations by operator theoretic methods. To this end we study the spectra of the perturbation operators, prove well--posedness of the corresponding linear Cauchy problem and deduce a growth estimate for solutions. Finally, we study perturbations of the limiting solution which is obtained from $f_n$ by letting $n \to \infty$.

Organisation(en)
Gravitationsphysik
Journal
Journal of Hyperbolic Differential Equations
Band
6
Seiten
359-370
Anzahl der Seiten
12
ISSN
0219-8916
DOI
https://doi.org/10.1142/S0219891609001812
Publikationsdatum
2009
Peer-reviewed
Ja
ÖFOS 2012
1010 Mathematik, 1030 Physik, Astronomie
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/0f1c3203-2f51-4fe4-a914-414e33f4a643