Die u:cris Detailansicht:
Nonlinear Stability of the Milne Model with Matter
- Autor(en)
- Lars Andersson, David Fajman
- Abstrakt
We show that any 3+1-dimensional Milne model is future nonlinearly, asymptotically stable in the set of solutions to the Einstein-Vlasov system. For the analysis of the Einstein equations we use the constant-mean-curvature-spatial-harmonic gauge. For the distribution function the proof makes use of geometric L-2-estimates based on the Sasaki-metric. The resulting estimates on the energy-momentum tensor are then upgraded by employing the natural continuity equation for the energy density. The combination of L-2-estimates and the continuity equation reveals a powerful tool to analyze massive transport equations with potential applications beyond the result presented here.
- Organisation(en)
- Gravitationsphysik
- Externe Organisation(en)
- Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut)
- Journal
- Communications in Mathematical Physics
- Band
- 378
- Seiten
- 261–298
- Anzahl der Seiten
- 38
- ISSN
- 0010-3616
- DOI
- https://doi.org/10.1007/s00220-020-03745-w
- Publikationsdatum
- 04-2020
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103019 Mathematische Physik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Statistical and Nonlinear Physics, Mathematical Physics
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/0e201afd-95f8-4915-9a8e-943be245fa59