Die u:cris Detailansicht:

Nonlinear Stability of the Milne Model with Matter

Autor(en)
Lars Andersson, David Fajman
Abstrakt

We show that any 3+1-dimensional Milne model is future nonlinearly, asymptotically stable in the set of solutions to the Einstein-Vlasov system. For the analysis of the Einstein equations we use the constant-mean-curvature-spatial-harmonic gauge. For the distribution function the proof makes use of geometric L-2-estimates based on the Sasaki-metric. The resulting estimates on the energy-momentum tensor are then upgraded by employing the natural continuity equation for the energy density. The combination of L-2-estimates and the continuity equation reveals a powerful tool to analyze massive transport equations with potential applications beyond the result presented here.

Organisation(en)
Gravitationsphysik
Externe Organisation(en)
Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut)
Journal
Communications in Mathematical Physics
Band
378
Seiten
261–298
Anzahl der Seiten
38
ISSN
0010-3616
DOI
https://doi.org/10.1007/s00220-020-03745-w
Publikationsdatum
04-2020
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik
Schlagwörter
ASJC Scopus Sachgebiete
Statistical and Nonlinear Physics, Mathematical Physics
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/0e201afd-95f8-4915-9a8e-943be245fa59