Die u:cris Detailansicht:

A New Class of Asymptotically Non-Chaotic Vacuum Singularities

Autor(en)
Paul Klinger
Abstrakt

The BKL conjecture, stated in the 1960s and early 1970s by Belinski, Khalatnikov and Lifschitz, proposes a detailed description of the generic asymptotic dynamics of spacetimes as they approach a spacelike singularity. It predicts complicated chaotic behaviour in the generic case, but simpler non-chaotic one in cases with symmetry assumptions or certain kinds of matter fields.Here we construct a new class of four-dimensional vacuum spacetimes containing spacelike singularities which show non-chaotic behaviour. In contrast with previous constructions, no symmetry assumptions are made. Rather, the metric is decomposed in Iwasawa variables and conditions on the asymptotic evolution of some of them are imposed. The constructed solutions contain five free functions of all space coordinates, two of which are constrained by inequalities.We investigate continuous and discrete isometries and compare the solutions to previous constructions. Finally, we give the asymptotic behaviour of the metric components and curvature.

Organisation(en)
Gravitationsphysik
Journal
Annals of Physics
Band
363
Seiten
1-35
Anzahl der Seiten
35
ISSN
0003-4916
Publikationsdatum
10-2015
Peer-reviewed
Ja
ÖFOS 2012
103028 Relativitätstheorie
Schlagwörter
ASJC Scopus Sachgebiete
Allgemeine Physik und Astronomie
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/079ec8f4-5160-494d-9b62-617e9e8614b7