Die u:cris Detailansicht:

Unique continuation and extensions of Killing vectors at boundaries for stationary vacuum space-times

Autor(en)
Piotr T. Chrusciel, Erwann Delay
Abstrakt

Generalizing Riemannian theorems of Anderson-Herzlich and Biquard, we show that two (n + 1)-dimensional stationary vacuum space-times (possibly with cosmological constant Lambda is an element of R) that coincide up to order one along a timelike hypersurface J are isometric in a neighbourhood of J. We further prove that KIDS of partial derivative M extend to Killing vectors near In the AdS type setting, we show unique continuation near conformal infinity if the metrics have the same conformal infinity and the same undetermined term. Extension near partial derivative M of conformal Killing vectors of conformal infinity which leave the undetermined Fefferman-Graham term invariant is also established.

Organisation(en)
Gravitationsphysik
Externe Organisation(en)
University of Avignon
Journal
Journal of Geometry and Physics
Band
61
Seiten
1249-1257
Anzahl der Seiten
9
ISSN
0393-0440
DOI
https://doi.org/10.1016/j.geomphys.2011.02.011
Publikationsdatum
2011
Peer-reviewed
Ja
ÖFOS 2012
103036 Theoretische Physik, 103028 Relativitätstheorie, 103019 Mathematische Physik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/05496916-56ac-4ab1-ae81-6f5f653653e7